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A B S T R A C T

Change detection between images is a procedure used in many applications of remote sensing data. Among these
applications, the identification of damaged infrastructures in urban areas due to a large-scale disaster is a task
that is crucial for distributing relief, quantifying losses, and rescue purposes. A crucial consideration for change
detection is that the images must be co-registered precisely to avoid errors resulting from misalignments. An
essential consideration is that some large-magnitude earthquakes produce very complex distortions of the
ground surface; therefore, a pair of images recorded before and after a particular earthquake cannot be co-
registered accurately. In this study, we intend to identify changes between images that are not co-registered. The
proposed procedure is based on the use of phase correlation, which shows different patterns in changed and non-
changed areas. A careful study of the properties of phase correlation suggests that it is robust against mis-
alignments between images. However, previous studies showed that, in areas with no-changes, the signal power
in the phase correlation is not concentrated in a single component, but rather in several components. Thus, we
study the performance of the ℓ1-regularized logistic regression classifier to identify the relevant components of
phase correlation and learn to detect non-changed and changes areas. An empirical evaluation consisting of
identifying the changes between pre-event and post-event images corresponding to the 2018 Sulawesi Indonesia
earthquake-tsunami was performed for this purpose. Pairs of visible and near-infrared (VNIR) spectral bands of
medium-resolution were used to compute the phase correlation to set feature space. The phase correlation-based
feature space consisted of 484 features. We evaluate the proposed procedure using a damage inventory per-
formed from visual inspection of optical images of 0.5-m resolution. A third-party provided the referred in-
ventory. Because of the limitation of medium-resolution imagery, the different damage levels in the damage
inventory were merged into a binary class: “changed” and “non-changed”. The results demonstrate that the
proposed procedure efficiently reproduced 85 ± 6% of the damage inventory. Furthermore, our results iden-
tified tsunami-affected areas that were not previously identified by visual inspection.

1. Introduction

Estimating the damage to the built environment after a large-scale
disaster using remote sensing data has become an important task
(Matsuoka and Yamazaki, 2004; Yamazaki and Matsuoka, 2007;
Matsuoka and Nojima, 2010; Ghosh et al., 2011; Liu et al., 2013; Gokon
et al., 2016; Miura et al., 2016; Liu and Yamazaki, 2017; Karimzadeh

and Mastuoka, 2017; Moya et al., 2018a, 2018b, 2018c; Bai et al., 2018;
Moya et al., 2019a, 2019b). The most common approach, termed
change detection, is employed to identify changes between a pair of
images recorded before (pre-event) and after (post-event) an arbitrary
disaster. A proper comparison between these two images requires their
georeference to have high precision. In order to reduce the effects of
distortions and offsets between images, a preliminary process called
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image registration must be applied. Generally, image registration refers
to the process of aligning different images of the same scene acquired at
different times, at different viewing angles, and/or with different sen-
sors. Initially, image registration required expert intervention to select
ground control points (GCPs) manually, a task that can be laborious,
time-consuming, and sometimes challenging in low-resolution optical/
microwave imagery. Fortunately, to date, various automatic image re-
gistration procedures have been proposed (Cole-Rhodes et al., 2003;
Wong and Clausi, 2007; Kern and Pattichis, 2007; Goncalves et al.,
2011; Xu et al., 2016; Feng et al., 2019). However, the selection of GCPs
is still a critical issue in automatic procedures. The number of GCPs is a
trade-off problem. A low number of GCPs results in poor registration;

on the other hand, an excessive number of GCPs requires a high com-
putational cost. In general, standard image registration utilizes the
offsets measured at GCPs to re-sample one image to align it with the
other. Similarity and polynomial warping are standard re-sampling
techniques (Canty, 2014). Similarity warping assumes a uniform offset,
rotation, and scaling, while polynomial warping performs a polynomial
mapping, which produces smooth re-sampling between GCPs. However,
complex local distortions cannot be registered.

Recently, image registration techniques have been used to quantify
real deformation. Correlation, an essential procedure behind the image
registration process, has been recently applied to quantify 2D ground
deformation (Rosu et al., 2015). Fang et al. (2016) used phase

Fig. 1. Illustrations of the PCs computed on urban areas. (left) Red-band pre-event optical image recorded on July 4, 2018. (middle) Red-band post-event optical
image recorded on October 2, 2018. (right) Computed PC. Grid lines were included to emphasize the offset between both images. The images were downloaded from
the DigitalGlobe Open Data Program. Notice the presence of a peak on the PCs computed on non-damaged urban areas (a–b) and the absence of a peak from the PC
computed on a damaged urban area (c).
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Fig. 2. Cross section of a PC.

Fig. 3. Portion of the urban area of Palu city, Indonesia, captured by DigitalGlobe's sensor on July 4, 2018 (left), and October 2, 2018 (right), that is, before and after
the earthquake, respectively. The orange dashed line in the right figure denotes the location of the fault line. The numbers and arrows in yellow denote the magnitude
(in meters) and the orientation of the horizontal offset component, respectively. The location of the area is shown in Fig. 5c. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Illustration of the surface rupture caused by the 2018 Sulawesi Indonesia earthquake in an agricultural field. Left: Illustration of the discontinuity in the linear
arrangements of crops due to the fault rupture. Right: Measurement of the deformation across the fault line. Photos provided by Koshimura et al. (2019). The
locations of the photos are shown in Fig. 5c.

Table 1
Specifications of the satellite images used in this study.

Satellite constellation Acquisition date Spectral bands Relative Orbit number Covered area (km2) Resolution (m)

Planet 28/09/2018 VNIR – 2955 3
Planet 01/10/2018 VNIR – 1735 3
Sentinel-2 18/08/2018 VNIR 103 10,000 10
Sentinel-2 02/10/2018 VNIR 103 10,000 10
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correlation in synthetic aperture radar (SAR) intensity images to esti-
mate glacier surface motion. Three-dimensional coseismic displace-
ments were computed from Lidar data in Moya et al. (2017). In Stumpf
et al. (2017), multiple-pairwise image correlation was employed to
detect and monitor slow-moving landslides. Bao et al. (2019) used
normalized cross-correlation to compute the slip distribution of the
2018 Mw 7.5 earthquake that struck Palu, Indonesia, and its results
were used as evidence of an earthquake source consisting of an early
and persistent supershear rupture mechanism. A specific issue arises
when collapsed buildings in areas that suffer permanent ground de-
formation must be identified; a situation associated with large-magni-
tude earthquakes. The 2011 moment magnitude (Mw) 9 Tohoku-Oki
earthquake-tsunami (Ozawa et al., 2011; Liu et al., 2013), the 2016 Mw
7 Kumamoto earthquake (Moya et al., 2017, 2018c), and the 2018 Mw
7.5 Sulawesi Indonesia earthquake-tsunami (Bao et al., 2019) are ex-
amples of such scenarios. Mathematical models of the ground de-
formation caused by an earthquake are based on the combination of
two terms: the near-field and far-field terms (Shearer, 2009; Udías
et al., 2014). Both terms depend on the distance, R, to the earthquake
source. The far-field term is inversely proportional to R, whereas the
near-field term is, depending on the model, inversely proportional to a
power of R. This means that the near-field term is dominant in areas
close to the source, and thus, image registration based on a constant
shift or linear transformation might not be sufficient. The most critical
issue is, however, when the area of interest contains the fault line as-
sociated with the earthquake. A fault line is a planar fracture or dis-
continuity between rock bodies. When the rupture mechanism is strike-
slip motion, prominent offsets are produced with opposite directions on
each side of the fault. Such sudden discontinuities cannot be corrected
in areas between GCPs because the standard image methods assume
smooth transitions.

The features commonly used to detect changes produced by large-
scale disasters are computed under the assumption that the images are
correctly co-registered. In this manuscript, we propound the search for
suitable features for damage detection that might be invariant to offsets
and/or distortions. In this way, the image registration processing may
be eliminated from the damage mapping processing chain. Intuitively,
the most promising candidates are the parameters hidden in the tech-
niques employed for image registration. Image registration is intimately
related to change detection. Damage detection looks for changes,
whereas image registration looks for similarities. Therefore, in this

study, we evaluate the potential of phase correlation (PC), which is
based on the Fourier shift theorem, to identify damage in urban areas.
The PC is the inverse discrete Fourier transform of a normalized cross
power spectrum computed from a pair of images. A comprehensive
review of applications of Fourier-based image correlation on image
registration is provided in Tong et al. (2019). If the two images are
similar, then the PC will exhibit a prominent peak, whose location in-
dicates the offset of one image with respect to the other. However, here,
we are concerned with the existence of such a peak rather than its lo-
cation. It is assumed, given that the temporal baseline between images
is short enough, that urban areas without heavy damage will exhibit a
distinctive peak in their PC; otherwise, there will be no peak. As noted
elsewhere (Takita et al., 2013; Foroosh et al., 2002), the peak shape,
i.e., the peak height and its surrounded values, provides a better-de-
tailed description of the degree of similarity between images rather
than only the peak height. Therefore, we use a sparse statistical model,
more specifically, ℓ1-regularized logistic regression, to find the number
of components of PC that play an important role in the identification of
changes. It is worth noting, the use of PC in remote sensing-based
change detection for disaster response is almost negligible. Adriano
et al. (2015) used PC to identify damage from microwave imagery.
However, their study was limited to the use of the maximum value of
the PC. Thus, an innovative aspect of our study is the analysis of the
complete signal of the PC through sparse modeling, and the results
suggest that not only the maximum value of the PC-array contains va-
luable information to identify damage from remote sensing data.

The remainder of this paper is organized as follows. The next
chapter introduces the phase correlation (PC) technique to some extent,
emphasizing its effect on a discrete domain and its application to col-
lapsed and non-collapsed buildings. Chapter 3 provides a glimpse of the
ℓ1-regularized logistic regression classifier. In chapter 4, the perfor-
mance of the proposed method is evaluated on the identification of
changes between pairs of images corresponding to the 2018 Mw 7.5
Sulawesi earthquake-tsunami. Finally, our conclusions are drawn in
Chapter 5.

2. The phase correlation (PC)

2.1. Fundamentals

Consider two functions f(x, y) and g(x, y) over ℝ2 that are absolutely

Fig. 5. Study area and satellite imagery. (a) Location of the study area, drawn as a blue rectangle, on the western part of Sulawesi, Indonesia. (b) Optical image
acquired by Planet on September 28, 2018. The colored marks denote the damage states of buildings provided by Copernicus. (c) Optical image acquired by Planet on
October 1, 2018. The red dots labeled F03 and F04 denote the locations of Figs. 3 and 4, respectively. (d) and (e) Optical images acquired by Sentinel-1 on August 18,
2018, and October 2, 2018, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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integrable and have the following relation:

= − −g x y f x x y y( , ) ( , )0 0 (1)

Its equivalence in the frequency domain, due to the Fourier shift
property, is:

= − +G u v F u v j ux vy( , ) ( , )exp( ( ))0 0 (2)

where F(u, v) and G(u, v) are the Fourier transforms of f(x, y) and g(x,
y), respectively. The normalized cross power spectrum is defined as
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The inverse Fourier transform of R results in the Dirac delta func-
tion centred at ( − x0, − y0), δ(x + x0, y + y0). Image analysis deals
with discrete domains, and thus, it is necessary to consider the different
properties. Let us define the discrete domain as n1 = − M1, …, M1 and
n2 = − M2, …, M2. The functions f(n1, n2) and g(n1, n2) are defined as:
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where T1 and T2 are the spatial sampling intervals, that is, the pixel
resolution. The expression equivalent to Eq. (3) in the discrete domain
is
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where F and G denote the discrete Fourier transforms (DFTs) of f(n1,
n2) and g(n1, n2), respectively. The PC is the inverse discrete Fourier
transform (IDFT) of R ; thus, we can think of the PC as a bidimensional
array or a matrix. If x0 and y0 are integer values, then the PC approx-
imates a unit pulse. The component of the PC that contains the pulse is
termed the coherent component. However, in real practice, the offset
between images is often not a multiple of the pixel resolution (i.e., ei-
ther x0 or y0 are not integers). Takita et al. (2013) used Eq. (2) as an
approximation:
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and approximated the PC in the following closed form:
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To achieve subpixel image registration, Takita et al. (2013) pro-
posed to first compute the inverse discrete Fourier transform (IDFT) of
R (Eq. (5)) and then to use the main peak and the components adjacent
to it to estimate α, x0, and y0 of Eq. (7) by using some function fitting
procedure. Foroosh et al. (2002) defined a similar closed form of the PC;

Fig. 6. Urban footprint over the study area shown in cyan. The urban footprint
was estimated using a land cover classification from Sentinel-2 imagery. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 7. Processing chain for urban change mapping.
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in their study, they assumed that the pixel resolution is an integer
multiple of the subpixel offset. Under this assumption, Foroosh et al.
(2002) provided a rigorous demonstration that more than one coherent
component is present when either x0 or y0 are not integer values.

2.2. PC-based features for change detection

PC has remarkable properties compared to the classical cross cor-
relation method. For instance, the coherent components of the PC form
a distinctive sharp peak. Another suitable property is that the PC is
invariant to uniform variations in the illumination and offsets in the
average intensity; hence, the PC is robust to images acquired during
different seasons and to fixed gain errors due to calibration. Fig. 1
shows pairs of red-band optical images recorded by DigitalGlobe before
and after the 2018 Sulawesi Indonesia earthquake-tsunami. Yellow

dashed grid lines are drawn to emphasize the offsets between the
images. The PCs showed in Fig. 1a and b exhibit a clear peak. That is,
the images are quite similar, and no significant changes are observed.
On the other hand, the PC shown in Fig. 1c does not exhibit a prominent
peak. There are significant changes between these images mainly be-
cause a building is non-damaged in one image, while it is collapsed in
the other.

In this study, the PC-matrix is used to construct a feature space to
identify changes in urban areas. For that purpose, the PC is shifted such
that the peak value is centered. Fig. 2 illustrates a closer look at a cross-
section through the PC peak of the examples shown in Fig. 1 after being
aligned. Recall that the coherent components are of great relevance in
the detection of changes. However, the number of coherent components
is unknown. In fact, if the image exhibits non-linear distortions over the
entire study area, the number of coherent components of the PC

Fig. 8. Construction of a feature sample matrix. (a) Image input. Each row represents a spectral band. The left and right columns denote the images acquired before
and after the earthquake-tsunami, respectively. (b) Images with Hanning window (HW) applied. (c) Computation of the PC-matrix. (d) PC submatrix of size 11 × 11
with the PC peak value in its center. (e) The feature sample matrix is constructed by merging the 4 PC-submatrices.

Fig. 9. Relationship of the PC peak value and the window size.
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computed over a moving window differs from one zone to another.
Moreover, based on previous studies, the number of coherent compo-
nents certainly represents only a small number of the components of the
PC-matrix. The next section introduces the strategy that will be fol-
lowed to identify those components.

3. ℓ1-Regularized logistic regression classifier

Consider a set of M samples (ri, zi)i=1
M, where ri ∈ ℝn is a feature

vector and zi ∈ { − 1,1} is an associated binary response. It is assumed
that the vectors ri have been standardized such that ∑ =r 0M i ij

1 and

∑ =r 1M i ij
1 2 , where rij denotes the jth-component of a feature vector ri.
This paper addresses binary discrimination, that is, whether an urban

area exhibits changes (zi = 1) or not (zi = − 1). The conditional
probability Pr(zi = 1∣ri) is defined as:

⎜ ⎟
⎛
⎝
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⎠

=
+

+ +
Pr z

β β
β β

r
r

r
1

exp( )
1 exp( )i i

T
i
T

i

0

0 (8)

where β0 is an intercept term, and β ∈ ℝn is a vector of regression
coefficients. Here, the approach to fit the logistic model is based on
minimizing the negative log-likelihood with ℓ1-regularization:

∑⎧
⎨⎩

− + − + + ∥ ∥ ⎫
⎬⎭=M

z β β λ βrminimize 1 log(1 exp( ( )))
β β i

M

i
T

i
, 1

0 1
0 (9)

where ∥ ⋅ ∥1 denotes the ℓ1-norm. Further details on Eq. (9) can be found
in Hastie et al. (2015). As carefully explained in Section 4.2.1, ri

Fig. 10. Components of vector β calibrated from the ℓ1-regularized logistic regression classifier. Note that β consists of 484 components (x-axis). The vector β was
computed under different values of the parameter C (y-axis). Top: Vector β calibrated from the feature space constructed from the Planet imagery. Bottom: Vector β
calibrated from the feature space constructed from the Sentinel-2 imagery.

Fig. 11. Percentage of the non-zero components of vector β as a function of C. The red solid line denotes the results obtained from the feature space constructed from
the Planet imagery and the blue dashed line denotes that obtained from the Sentinel-2 imagery. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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represents the PC-matrices rearranged in a vector format. The term
λ ∥ β∥1 is denoted as the ℓ1-penalty. The key property of the ℓ1-penalty
is that it yields sparse solutions. A sparse solution refers to a solution in
which the vector β has relatively few non-zero components, a property
that will be exploited to identify the coherent components of the PC-
matrix. The sparse level, defined here as the fraction of zero-valued
components, increases as λ increases. The optimization problem is also
expressed in the following form:

∑⎧
⎨⎩

+ − + + ∥ ∥ ⎫
⎬⎭=

C z β β βrminimize log(1 exp( ( )))
β β i

N

i
T

i
, 1

0 1
0 (10)

Thus, the sparse level increases as C decreases, which is sometimes
more convenient to assess vector β under different sparse levels. The
utility of this modification will be shown in Chapter 4.

4. Empirical evaluation: the 2018 Sulawesi Indonesia earthquake-
tsunami

On September 28, 2018, an earthquake of Mw 7.5 occurred 75 km
north of the city of Palu, Central Sulawesi, Indonesia. The epicenter was
located in the northern part of Donggala District on an active strike-slip
fault called Palu-Koro (Socquet et al., 2019). The earthquake induced a
tsunami, whose mechanism remains controversial (Muhari et al., 2018;
Arikawa et al., 2018; Heidarzadeh et al., 2019; Takagi et al., 2019;
Sassa and Takagawa, 2019). Evidence from a field survey suggests that
the maximum flow depth and tsunami height were 8 m and 10 m, re-
spectively (Muhari et al., 2018). Furthermore, another effect was pro-
duced by this earthquake. The transient ground motion of the earth-
quake generated excess pore pressure within the undrained
cohesionless soil. This phenomenon, well known as liquefaction
(Kramer, 1996), compromised the shear strength of the soil and pro-
duced significant soil deformation, soil flow (that is, as a fluid), and
lateral spreading. As a result, this earthquake, together with its sec-
ondary effects, resulted in an extensive damaged area. As of October 25,
2018, approximately 68,451 damaged houses, 2081 casualties, and
4438 injured people had been reported (The AHA Centre, 2018).

Because the Palu-Koro fault crosses directly through the city of Palu,
the slip distribution (Bao et al., 2019; Socquet et al., 2019), soil li-
quefaction, and lateral spreading ultimately produced very complex
ground deformation in many areas of the city. Fig. 3 shows a close-up of
an urban area in Palu city recorded by DigitalGlobe (2018) before and
after the earthquake. Liquefaction is observed in the bottom-left corner.
The orange dashed line denotes the location of the fault line. Recall that
this fault completely traverses the city of Palu. The yellow arrows de-
note estimates of the horizontal offset between the images. Note that
the north-south component of the offset on the left side of the fault is
opposite to that on the right side, which highlighted by the distortions
of the roads and streets. Furthermore, the offset magnitude increases
from south to north. Given these characteristics, it is evident that the
earthquake was the main source of the offsets between the images.
Fig. 4 shows the fault line crossing an agricultural field. Surface rupture
is observed because the linear arrangement of the crops is perpendi-
cular to the slip orientation. Deformation of 3.72 m was observed in the
referred agricultural field. As a result, image registration is challenging
to apply along the fault line and the areas that experienced liquefaction,
and therefore, change detection-based damage identification must be
conducted carefully. The use of PC-matrix is a good option for identi-
fying damage in the infrastructure.

4.1. Data used

Because of their ability to cover large areas, medium-resolution
images are used in this study to detect urban changes between a pair of
images taken before and after the 2018 Sulawesi Indonesia earthquake-
tsunami. Three-meter resolution imagery provided by Planet (2018)
and 10 m resolution imagery provided by Sentinel-2 are evaluated in
independent experiments. Additional specifications of the images are
shown in Table 1. The visible and near-infrared (VNIR) bands are used
in both studies. Fig. 5a shows the location of the study area in the
western part of Sulawesi, Indonesia, which covers around 475 km2. This
study focuses on the city of Palu, the most severely affected zone, and
its surroundings. Fig. 5b and c show the visible spectral bands of the
satellite images acquired on September 28, 2018, and October 1, 2018,

Fig. 12. Ten-fold cross-validation curves for the
samples constructed from the Planet (top) and
Sentinel-2 (bottom) imagery. The blue marks denote
the averaged overall accuracy, and the gray bars
denote the standard deviation error. (For inter-
pretation of the references to color in this figure le-
gend, the reader is referred to the web version of this
article.)
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by Planet (2018). Likewise, Fig. 5d and e shows the images acquired on
August 18, 2018, and October 2, 2018, by Sentinel-2. Moreover, high-
resolution (50-cm resolution) optical imagery recorded on October 2,
2018, by DigitalGlobe (2018) will be employed to assess the results.

To filter out vegetation areas that are sensitive to changes of types
other than those produced by the earthquake or tsunami, a map that
indicates only infrastructures is necessary. Hereafter, this map is re-
ferred to as an urban footprint map. A series of routines for generating
samples automatically from multitemporal Sentinel-2 images were es-
tablished. We used Sen2Cor (The European Space Agency, 2018) to
perform atmospheric, terrain, and cirrus corrections on top-of-atmo-
sphere radiance data (Level 1C) and generate bottom-of-atmosphere
reflectance data (Level 2A). Scene classification maps generated by
Sen2Cor via unsupervised techniques were used to select training
samples of vegetation, soil, water, and clouds. We obtained training
samples of artificial surfaces (i.e., urban areas) from OpenStreetMap
layers of buildings and roads. Canonical correlation forest (Rainforth
and Wood, 2015) that extends random forest with canonical correla-
tion-based feature extraction was adopted as a classifier. A total of
eleven Sentinel-2 datasets acquired in 2018 before the event were
processed, and the final classification map was created by the majority

voting of multi-temporal land cover maps. The resulting product, which
has a ground sampling distance of 10 m, is shown in Fig. 6.

The following describes the database used to calibrate and test the
ℓ1-regularized logistic regression classifier. Copernicus, Emergency
Management Service (2018) provided a building damage inventory.
The damage condition was evaluated through visual interpretation of
the entire affected area with post-event optical satellite imagery with a
50-cm resolution. The first report of the complete survey was released
approximately one week after the earthquake-tsunami, and updated
versions were released on subsequent days. Four damage grades were
defined: destroyed, damaged, possibly damaged, and non-damaged.
Additionally, on October 20–22, 2018, the fourth author led a field
investigation as part of the Indonesian government's reconnaissance
(Koshimura et al., 2019). The survey aimed to measure the extent of
tsunami inland penetration with RTK-GNSS (Fig. 15), to measure the
flow depths, and to inspect structural damage. The surveyed area
consisted of the middle-south area of Palu Bay. Buildings classified as
destroyed and non-damaged by Copernicus agreed with observations
performed during the field survey of Koshimura et al. (2019). On the
other hand, buildings labeled as damaged and possibly damaged were
controversial. Overall, the area inspected by Copernicus was much

Fig. 13. Vector β, rearranged as a matrix in the same way as a feature sample matrix (Fig. 8e), computed from different values of C. Top: Results obtained from the
Planet feature space. Bottom: Results obtained from the Sentinel-2 feature space. The K-value below each plot denotes the number of non-zero components of β.

L. Moya, et al. Remote Sensing of Environment 242 (2020) 111743

9



more extensive than those surveyed by Koshimura et al. (2019). Be-
sides, the identification of intermediate damage levels from medium
resolution satellite images is doubtful. Therefore, in this study, samples
labeled by Copernicus as damaged, possibly damaged, and non-da-
maged are merged as non-changed; whereas, samples labeled as de-
stroyed are labeled as changed.

4.2. Results

The block diagram in Fig. 7 shows the implemented processing
chain. Three types of inputs are required: (i) The damage inventory, (ii)
the pre- and post-event images, and (iii) the urban footprint map. First,
the pre- and post-event images are used to compute the PC-matrices in
urban areas and use them as input features. Then, the damage inventory
is used to assign label class to some features samples and use them as

training input to calibrate the ℓ1-regularized logistic regression. Finally,
a classification task is performed over the urban footprint map using the
input features and the ℓ1-regularized logistic regression classifier. The
final output is a map that indicates the damage-based changes in the
urban areas. The performance of the proposed procedure was evaluated
separately on both the imagery recorded by Planet and the imagery
recorded by Sentinel-2. In the following, more details of every stage are
provided.

4.2.1. PC features
The construction of the feature space for the Planet imagery is

summarized in Fig. 8. The PC is computed from the pre- and post-event
images for each spectral band. A moving window of 21 × 21 pixels is
used. First, because Fourier analysis assumes periodicity, a 2D Hanning
window is applied to each sub-image. Then, the PC-matrix is computed,

Fig. 14. Map with changes observed in the urban
footprint areas computed from the Planet (left) and
Sentinel-2 (right) imagery. The maps are shown on
top of the post-event imagery used for the classifi-
cation. The maps were computed using sparse
models with C=0.0022 for the Planet imagery and
C=0.001 for the Sentinel-2 imagery. Red and green
pixels denote changed and non-changed urban areas,
respectively, with a resolution of 10 × 10m2. The
rectangular boxes labeled F15, F17, and F19 denote
the areas shown in Figs. 15, 17, and 19, respectively.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 15. A closer look at the central area of Palu Bay. The location of the area is shown in Fig. 14. Left: Damage inventory performed by Copernicus. Center: Changes
detected from the Planet imagery. Right: Changes detected from the Sentinel-2 imagery. The blue line denotes the limits of the inundated area due to the tsunami
traced by RTK-GNSS. The large changed area detected at the bottom left is one of the largest areas that experienced soil liquefaction. The black arrow labeled F16
denotes the orientation from which the photo shown in Fig. 16 was shot. The black rectangles labeled F18a and F18b denote the areas shown in Fig. 18a and b,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. A survey photo taken by Koshimura et al. (2019) in the urban area that experienced soil liquefaction. Its location is shown in Fig. 15.

Fig. 17. Wide liquefaction area induced by the 2018 Indonesia earthquake-tsunami. Left: Damage survey performed by Copernicus. Center: Changes detected using
the Planet imagery. Right: Changes detected using the Sentinel-2 imagery. The location of this area is shown in Fig. 14.

Fig. 18. Closer look at the estimated damage in the center of Palu Bay. The locations of the areas are shown in Fig. 15. Left: High-resolution optical imagery provided
by DigitalGlobe overlaid with the changes detected from the Sentinel-2 imagery. The red areas are the detected changes in the urban areas, whereas the areas colored
green are non-changed urban areas. Center: Photos taken before the tsunami and posted on Google Maps. Right: Photos taken by Koshimura et al. (2019) after the
earthquake-tsunami. The blue arrows shown in the left column represent the directions from which the photos were shot. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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and an 11 × 11 submatrix is stored. The PC-submatrix contains the PC
peak in its center. Then, a feature sample matrix is defined here as the
four PC-submatrices merged, as depicted in Fig. 8e. Lastly, the feature
vector, ri, defined in Section 3, is the feature sample matrix rearranged
as a vector. Note that each PC-submatrix contributes with
11 × 11=121 features to the feature space. Thus, the dimension of ri is
484. A similar procedure was applied to construct the feature space
from the Sentinel imagery using a moving window of 11 × 11 pixels,
and the PC's maximum value was centered by applying a circular shift.

Regarding the selection of the window size, it was determined from
a small, but a representative number of samples of non-changed, and
tsunami/liquefaction-based changed areas. Fig. 9 depicts the PC peak
value computed under different window sizes. Note that the smallest
window size exhibits the largest PC peak. Then, as the window size
increases, the PC peak quickly decreases until it reaches the window

size of 9 × 9 for Sentinel-1 imagery and about 19 × 19 for Planet
imagery. The largest correlation observed in the window size of 5 × 5 is
mainly because the Hanning window applied to both images before PC
was computed. Thus, in this study, we used a window size of 11 × 11
and 21 × 21 for Sentinel-1 and Planet imagery, respectively. Recall
that a larger window size shows a higher correlation peak for the non-
changed areas but at the expenses of spatial resolution. An additional
factor that needs to be considered is that the maximum measurable shift
between the images must be lower than the window size. Based on the
sampling theorem, the minimum window size must be twice the max-
imum measurable shift; however, most of the previous studies used
bigger window sizes.

4.2.2. Calibration of the ℓ1-regularized logistic regression
Feature samples were computed at the location of Copernicus's

survey and used to calibrate the ℓ1-regularized logistic regression
classifier. A total of 8558 samples from the Copernicus survey were
used as ground truth data for training and testing; 50% of the samples
consisted of destroyed buildings, and the other 50% consisted of non-
damaged buildings. The discriminant function was calibrated several
times using Eq. (10) over a range of values for the parameter C. Fig. 10
depicts the effect of C over the vector β and Fig. 11 shows the relation of
C and the number of non-zero components of β. Note that less than 5%
of the components of β are non-zero when C is less than 10−3, and less
20% when C is less than 10−2. Furthermore, almost every component is
non-zero when C>0.3. These patterns are observed from both the
results from Planet and the results from Sentinel-2 imagery (Fig. 11).

Fig. 19. Changes detected over the tsunami inundation area. Top: High-resolution optical images taken before (left) and after (right) the earthquake-tsunami. The
images were provided by DigitalGlobe. Bottom: Changes detected over the urban footprint map computed from the Planet imagery (left) and the Sentinel-2 imagery
(right). The location of this area is shown in Fig. 14.

Table 2
Comparison of ℓ1-regularized logistic regression with other three classifiers: ℓ2-
regularized logistic regression, support vector machine with linear function
kernel (SVM-linear), and support vector machine with radial basis function
kernel (SVM-rbf). LR: logistic regression.

Classifier Score (%) Runtime (s)

ℓ1-Regularized LR 85 ± 6 30
ℓ2-Regularized LR 86 ± 7 38
SVM-linear 86 ± 7 1049
SVM-rbf 89 ± 6 239
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The 10-fold cross-validation was applied to evaluate the performance of
the ℓ1-regularized logistic regression. That is, the ground truth data are
randomly divided into 10 subsets, from which 9 subsets are used for
calibration, and the remaining subset is used to evaluate the accuracy.
The fraction of correctly classified samples, termed the overall accuracy,
is employed as a score for the evaluation. This process is repeated 10
times, each with a different subset for the accuracy evaluation. The 10-
fold cross-validation was applied for different values of C over the two
experiments, and the results are reported in Fig. 12. The blue mark
denotes the averaged score, and the bars denote the limits of the
average plus/minus the standard deviation. Note that the score is 50%
in the lowest value of C. This situation occurs when the components of β
are all zero. The accuracy is 50% because the ground truth data are
balanced (that is, the same amount of samples exist for each class), and
all the testing data are classified as the same class. For the Planet
imagery, once β obtains its first non-zero component (see the top of
Fig. 10) at C≈ 0.0005, the classifier reaches an average performance of
75%. As C increases, the accuracy increases until it reaches an average
score of about 85% at C ≈ 0.003. Note that the standard deviation also
increases slightly as C increases. The 10-fold cross-validation results
computed from the Sentinel-2 samples show approximately the same
maximum average score. However, the maximum performance is
reached at a lower value of C than that from the Planet dataset.

Figs. 10–12 demonstrate that only a few non-zero components of
vector β are necessary to achieve high accuracy. Fig. 13 provides a
closer look at the coefficients of β, rearranged as a matrix in the same
way as a feature sample matrix (Fig. 8e), under specific values of C.
Note that as C increases from zero, the first non-zero component of β are
those associated with the shape of the PC-peaks computed over the four
bands. For the case of the Planet imagery, only these components of β
are necessary to reach their maximum performance. These results
suggest that the components adjacent to the PC peak are important as
well, as can be confirmed with the results obtained with C=0.0022,
from which only 22 components out of 484 were necessary to achieve
the 85% accuracy (Fig. 13). Moreover, notice that higher values of C do
not increase the accuracy significantly. Different behavior is observed
in the case of Sentinel-2 imagery. Here, only the PC peaks are necessary
to reach the maximum performance, 85% accuracy. In other words,
additional components adjacent to the PC peak do not increase the
accuracy.

4.2.3. Urban change map
Fig. 14 shows the resulting changes detected over the urban foot-

print map (Fig. 6) computed from the Planet and Sentinel-2 imagery.
The results from the Planet imagery were computed using a sparse
model with C=0.0022, while those from the Sentinel-2 imagery were
computed from a sparse model using C=0.001. In general, both results
are consistent but with some differences in the northern area. One cause
of these differences is the presence of clouds in the northeastern area of
the post-event Sentinel-2 image, which produced false detections. Un-
fortunately, the differences between both maps in the northwestern
area could not be carefully analyzed due to the low resolution of the
images and the lack of additional information. A closer look at the
central area of Palu Bay is depicted in Fig. 15. The results from the
Planet imagery are noisier than those from the Sentinel-2 imagery.
However, most of the changes detected in the urban footprint areas
contain the buildings labeled as destroyed by Copernicus. The sig-
nificant amount of detected changes in the bottom-left area of Fig. 15
represents the damage produced by soil liquefaction, which produced
immense damage (see Fig. 16). Another wide area that experienced soil
liquefaction is shown in Fig. 17. Regarding the damage produced by the
tsunami, most of the changes detected along the central part of Palu Bay
are located within the inundated area traced by RTK-GNSS (blue line in
Fig. 15). Fig. 18 shows photos taken before and after the tsunami at the
Palu Bay. Another tsunami-inundated area that was not surveyed by
Copernicus but was detected from our results is depicted in Fig. 19. The

results were confirmed with high-resolution optical images provided by
DigitalGlobe.

5. Discussion

Some issues require additional comments. For instance, the feature
space used in this study consists of the fusion of four PC submatrices
computed separately over four pairs of spectral bands (red, green, blue,
and near-infrared bands, see Fig. 8). Each PC was computed by the
application of a 2D Fourier transform, as detailed in Section 2. This is
not the only way to construct a feature space. If hyperspectral images
are available, 3D Fourier transform can be used directly instead of 2D
Fourier transform applied to each spectral band. This potential method
for constructing a feature space needs further evaluation and will
constitute the subject of future studies.

For the sparse model, the lowest numbers of non-zero components
of vector β to achieve an 85% overall accuracy were different for the
two experiments. We believe the size of the offset with respect to the
image resolution plays an important role in this matter. As shown in
Fig. 3, the displacement is on the same order of magnitude as the pixel
resolution (that is, 3 m) of the Planet imagery. On the other hand, the
Sentinel-2 resolution, 10 m, is much larger. In order to confirm this
hypothesis, it is necessary to conduct a study to observe the effect of the
offset-image resolution relationship on the number of non-zero com-
ponents of β. This task can be performed by applying synthetic offsets to
the post-event image. It is worth noting that only a few components of
the PC array are relevant, and thus, it is computationally efficient.
Based on the observed results, we suggest using only 9 components per
PC-matrix, 3 × 3 with the PC peak centered, for change detection
purposes.

One of the reasons that the resulting products exhibit some level of
noise is because the proposed method detected changes in urban areas
caused by factors other than the 2018 Sulawesi Indonesia earthquake-
tsunami. Among these factors are (i) buildings constructed between the
acquisition dates of the pre- and post-event images, (ii) increments in
the numbers of human-made objects, such as the number of planes at an
airport and the number of shelters established for the distribution of
relief supplies, (iii) presence of vegetation within the urban areas.
Another important factor for the misclassifications might be related to
the noise and aliasing effect on the PC.

In terms of accuracy, the ℓ1-regularized logistic regression performs
the same level of accuracy as other supervised machine learning clas-
sifiers. Table 2 reports the comparison of ℓ1-regularized logistic re-
gression with ℓ2-regularized logistic regression, the support vector
machine (SVM) with a linear function kernel, and the SVM with radial
basis function (rbf) kernel. The runtime used to perform the 10-fold
cross-validation is reported as well. As can be observed, all the classi-
fiers exhibit similar levels of accuracy. The SVM with rbf kernel shows
the highest score. It might be because it uses a non-linear discriminant
function. The advantage of the ℓ1-regularized logistic regression is the
interpretation of the fitted model without sacrificing accuracy. Recall,
the calibrated ℓ1-regularized logistic regression uses only 22 out of the
484 features computed from Planet imagery, whereas the other classi-
fiers use the complete set of features. Thus, another advantage is the
computational efficiency when predictions are performed.

In this study, we evaluate the use of the shape of the PC-peak as
feature input to detect damage-based changes between a pair of images.
It was assumed that the presence of the PC-peak is invariant with re-
spect to translations in areas without changes. There are, however,
other options. For instance, the Fourier-Mellin transformation can be
used as invariant with respect to translation, rotation, and scale (Tong
et al., 2019). The Fourier-Mellin transformation could be the right
choice when the images have different orientations. It is worth noting,
however, that it is customary to select the pre- and post-event images
with similar acquisition conditions. After a large scale disaster, images
are recorded at the earliest possible. Then, for the change detection
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analysis, the closest pre-event image with similar acquisition conditions
is selected from the archives. Thus, under this common practice, the
effect of rotation and scale can be neglected.

6. Conclusions

In this study, the phase correlation (PC) was employed as a feature
space to identify changes between a pair of images that are not co-
registered. This research aims to identify changes produced by large-
magnitude earthquakes that produce complex ground deformation
patterns; thus, traditional image registration methods cannot precisely
align such images. The fundamental principle of the use of PC is that it
will show a prominent peak in areas that do not exhibit changes,
whereas no peak is observed in areas that experience significant
changes. Thus, we used a sparse logistic regression model to identify the
relevant information from the PC. Moreover, we evaluated the perfor-
mance of the proposed procedure on the detection of changes produced
by the 2018 Sulawesi Indonesia earthquake-tsunami. For this purpose,
the experiment was performed twice using visual and near-infrared
(VNIR) spectral bands at different resolutions. In the first experiment,
VNIR imagery with a 3-m pixel resolution provided by Planet was used.
The second experiment used VNIR imagery with a 10-m pixel resolution
provided by Sentinel-2.

Ground truth data provided by a third party were used for the ca-
libration and testing of the ℓ1-regularized logistic regression classifier.
The 10-fold cross-validation was performed, and an averaged overall
accuracy of 85% was achieved in both experiments. From the feature
space constructed from the Planet imagery, only 22 features out of 484
were necessary to achieve its maximum performance. Likewise, from
the sample space constructed from the Sentinel-2 imagery, only 4 fea-
tures were necessary to achieve its best performance. These results
confirm that it is possible to detect changes in urban footprint maps
between images that are not co-registered. Though this research was
conceived to overcome the poor performance of traditional image re-
gistration in areas of complex ground deformation due to large-mag-
nitude earthquakes, avoiding the image registration process might
speed up the overall process of damage detection, which is also ap-
pealing in the context of early disaster response.
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